skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hart, A John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In supramolecular materials, multiple weak binding groups can act as a single collective unit when confined to a localized volume, thereby producing strong but dynamic bonds between material building blocks. This principle of multivalency provides a versatile means of controlling material assembly, as both the number and the type of supramolecular moieties become design handles to modulate the strength of intermolecular interactions. However, in materials with building blocks significantly larger than individual supramolecular moieties (e.g., polymer or nanoparticle scaffolds), the degree of multivalency is difficult to predict or control, as sufficiently large scaffolds inherently preclude separated supramolecular moieties from interacting. Because molecular models commonly used to examine supramolecular interactions are intrinsically unable to examine any trends or emergent behaviors that arise due to nanoscale scaffold geometry, our understanding of the thermodynamics of these massively multivalent systems remains limited. Here we address this challenge via the coassembly of polymer-grafted nanoparticles and multivalent polymers, systematically examining how multivalent scaffold size, shape, and spacing affect their collective thermodynamics. Investigating the interplay of polymer structure and supramolecular group stoichiometry reveals complicated but rationally describable trends that demonstrate how the supramolecular scaffold design can modulate the strength of multivalent interactions. This approach to self-assembled supramolecular materials thus allows for the manipulation of polymer−nanoparticle composites with controlled thermal stability, nanoparticle organization, and tailored meso- to microscopic structures. The sophisticated control of multivalent thermodynamics through precise modulation of the nanoscale scaffold geometry represents a significant advance in the ability to rationally design complex hierarchically structured materials via self-assembly. 
    more » « less
  2. Ultraviolet (UV) printing of photopolymers is a widely adopted manufacturing method because of its high resolution and throughput. However, available printable photopolymers are typically thermosets, resulting in challenges in postprocessing and recycling of printed structures. Here, we present a new process called interfacial photopolymerization (IPP) which enables photopolymerization printing of linear chain polymers. In IPP, a polymer film is formed at the interface between two immiscible liquids, one containing a chain-growth monomer and the other containing a photoinitiator. We demonstrate the integration of IPP in a proof-of-concept projection system for printing of polyacrylonitrile (PAN) films and rudimentary multi-layer shapes . IPP shows in-plane and out-of-plane resolutions comparable to conventional photoprinting methods. Cohesive PAN films with number-average molecular weights greater than 15 kg mol–1 are obtained, and to our knowledge this is the first report of photopolymerization printing of PAN. A macrokinetics model of IPP is developed to elucidate the transport and reaction rates involved and evaluate how reaction parameters affect film thickness and print speed. Last, demonstration of IPP in a multilayer scheme suggests its suitabiliy for three-dimensional printing of linear-chain polymers. 
    more » « less
  3. Automated handling of microscale objects is essential for manufacturing of next-generation electronic systems. Yet, mechanical pick-and-place technologies cannot manipulate smaller objects whose surface forces dominate over gravity, and emerging microtransfer printing methods require multidirectional motion, heating, and/or chemical bonding to switch adhesion. We introduce soft nanocomposite electroadhesives (SNEs), comprising sparse forests of dielectric-coated carbon nanotubes (CNTs), which have electrostatically switchable dry adhesion. SNEs exhibit 40-fold lower nominal dry adhesion than typical solids, yet their adhesion is increased >100-fold by applying 30 V to the CNTs. We characterize the scaling of adhesion with surface morphology, dielectric thickness, and applied voltage and demonstrate digital transfer printing of films of Ag nanowires, polymer and metal microparticles, and unpackaged light-emitting diodes. 
    more » « less
  4. Abstract Food quality monitoring, particularly, the detection of bacterial pathogens and spoilage throughout the food supply chain, is critical to ensure global food safety and minimize food loss. Incorporating sensors into packaging is promising, but it is challenging to achieve the required sampling volume while using food‐safe sensor materials. Here, by leveraging water‐based processing of silk fibroin, a platform for the detection of pathogenic bacteria in food is realized using a porous silk microneedle array; the microneedle array samples fluid from the interior of the food by capillary action, presenting the fluid to polydiacetylene‐based bioinks printed on the backside of the array. Through the colorimetric response of bioink patterns,Escherichia colicontamination in fish fillets is identified within 16 h of needle injection. This response is distinct from spoilage measured via the increase in sample pH. It is also shown that the microneedles can pierce commercial food packaging, and subsequently sample fluid and present it to the sensor, enabling the adaptation of the technology downstream in food supply chains such as in stores or at home. This study highlights that regenerated structural biopolymers can serve as safe materials for food contact and sensing with robust mechanical properties and tailored chemistry. 
    more » « less